skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Valiente, Nicolas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Lakes are significant players for the global climate since they sequester terrestrially derived dissolved organic carbon (DOC), and emit greenhouse gases like CO 2 to the atmosphere. However, the differences in environmental drivers of CO 2 concentrations are not well constrained along latitudinal and thus climate gradients. Our aim here is to provide a better understanding of net heterotrophy and gas balance at the catchment scale in a set of boreal, sub-Arctic and high-Arctic lakes. We assessed water chemistry and concentrations of dissolved O 2 and CO 2 , as well as the CO 2 :O 2 ratio in three groups of lakes separated by steps of approximately 10 degrees latitude in South-Eastern Norway (near 60° N), sub-Arctic lakes in the northernmost part of the Norwegian mainland (near 70° N) and high-Arctic lakes on Svalbard (near 80° N). Across all regions, CO 2 saturation levels varied more (6–1374%) than O 2 saturation levels (85–148%) and hence CO 2 saturation governed the CO 2 :O 2 ratio. The boreal lakes were generally undersaturated with O 2 , while the sub-Arctic and high-Arctic lakes ranged from O 2 saturated to oversaturated. Regardless of location, the majority of the lakes were CO 2 supersaturated. In the boreal lakes the CO 2 :O 2 ratio was mainly related to DOC concentration, in contrast to the sub-Arctic and high-Arctic localities, where conductivity was the major statistical determinant. While the southern part is dominated by granitic and metamorphic bedrock, the sub-Arctic sites are scattered across a range of granitic to sedimentary bed rocks, and the majority of the high-Arctic lakes are situated on limestone, resulting in contrasting lake alkalinities between the regions. DOC dependency of the CO 2 :O 2 ratio in the boreal region together with low alkalinity suggests that in-lake heterotrophic respiration was a major source of lake CO 2 . Contrastingly, the conductivity dependency indicates that CO 2 saturation in the sub-Arctic and high-Arctic lakes was to a large part explained by DIC input from catchment respiration and carbonate weathering. 
    more » « less
  2. Boreal lakes are the most abundant lakes on Earth. Changes in acid rain deposition, climate, and catchment land use have increased lateral fluxes of terrestrial dissolved organic matter (DOM), resulting in a widespread browning of boreal freshwaters. This browning affects the aqueous communities and ecosystem processes, and boost emissions of the greenhouse gases (GHG) CH 4 , CO 2 , and N 2 O. In this study, we predicted biotic saturation of GHGs in boreal lakes by using a set of chemical, hydrological, climate, and land use parameters. For this purpose, concentrations of GHGs and nutrients (organic C, -P, and -N) were determined in surface water samples from 73 lakes in south-eastern Norway covering wide ranges in DOM and nutrient concentrations, as well as catchment properties and land use. The spatial variation in saturation of each GHG is related to explanatory variables. Catchment characteristics (hydrological and climate parameters) such as lake size and summer precipitation, as well as NDVI, were key determinants when fitting GAM models for CH 4 and CO 2 saturation (explaining 71 and 54%, respectively), while summer precipitation and land use data were the best predictors for the N 2 O saturation, explaining almost 50% of deviance. Our results suggest that lake size, precipitation, and terrestrial primary production in the watershed control the saturation of GHG in boreal lakes. These predictions based on the 73-lake dataset was validated against an independent dataset from 46 lakes in the same region. Together, this provides an improved understanding of drivers and spatial variation in GHG saturation in boreal lakes across wide gradients of lake and catchment properties. The assessment highlights the need to incorporate multiple explanatory parameters in prediction models of GHGs for extrapolation across the boreal biome. 
    more » « less